Joint Binding of OTX2 and MYC in Promotor Regions Is Associated with High Gene Expression in Medulloblastoma
نویسندگان
چکیده
Both OTX2 and MYC are important oncogenes in medulloblastoma, the most common malignant brain tumor in childhood. Much is known about MYC binding to promoter regions, but OTX2 binding is hardly investigated. We used ChIP-on-chip data to analyze the binding patterns of both transcription factors in D425 medulloblastoma cells. When combining the data for all promoter regions in the genome, OTX2 binding showed a remarkable bi-modal distribution pattern with peaks around -250 bp upstream and +650 bp downstream of the transcription start sites (TSSs). Indeed, 40.2% of all OTX2-bound TSSs had more than one significant OTX2-binding peak. This OTX2-binding pattern was very different from the TSS-centered single peak binding pattern observed for MYC and other known transcription factors. However, in individual promoter regions, OTX2 and MYC have a strong tendency to bind in proximity of each other. OTX2-binding sequences are depleted near TSSs in the genome, providing an explanation for the observed bi-modal distribution of OTX2 binding. This contrasts to the enrichment of E-box sequences at TSSs. Both OTX2 and MYC binding independently correlated with higher gene expression. Interestingly, genes of promoter regions with multiple OTX2 binding as well as MYC binding showed the highest expression levels in D425 cells and in primary medulloblastomas. Genes within this class of promoter regions were enriched for medulloblastoma and stem cell specific genes. Our data suggest an important functional interaction between OTX2 and MYC in regulating gene expression in medulloblastoma.
منابع مشابه
Regulation of cell cycle genes and induction of senescence by overexpression of OTX2 in medulloblastoma cell lines.
The transcription factor orthodenticle homeobox 2 (OTX2) has been implicated in the pathogenesis of medulloblastoma, as it is often highly expressed and sometimes amplified in these tumors. Little is known of the downstream pathways regulated by OTX2. We therefore generated MED8A and DAOY medulloblastoma cell lines with doxycycline-inducible OTX2 expression. In both cell lines, OTX2 inhibited p...
متن کاملGenomic amplification of orthodenticle homologue 2 in medulloblastomas.
To better understand the genetic basis of medulloblastoma development, we sought genomic amplifications and deletions in these tumors using digital karyotyping in combination with expression analysis. Five medulloblastoma genomes were karyotyped by sequencing an average of 195,745 genomic DNA tags for each analysis. Tags were tallied at unique positions and mapped to the human genome to determi...
متن کاملOTX2 is critical for the maintenance and progression of Shh-independent medulloblastomas.
OTX2 is a developmentally regulated transcription factor involved in early morphogenesis of the central nervous system. This gene is amplified and overexpressed in medulloblastoma cell lines, but the nature and extent of its genetic alterations in primary tumors have not been evaluated. Analysis of a large cohort of primary medulloblastomas revealed frequent focal copy number gain of a region m...
متن کاملChromatin Accessibility Mapping Identifies Mediators of Basal Transcription and Retinoid-Induced Repression of OTX2 in Medulloblastoma
Despite an emerging understanding of the genetic alterations giving rise to various tumors, the mechanisms whereby most oncogenes are overexpressed remain unclear. Here we have utilized an integrated approach of genomewide regulatory element mapping via DNase-seq followed by conventional reporter assays and transcription factor binding site discovery to characterize the transcriptional regulati...
متن کاملO6-Methylguanine-DNA Methyltransferase and ATP-Binding Cassette Membrane Transporter G2 Promotor Methylation: Can Predict the Response to Chemotherapy in Advanced Breast Cancer?
Background: ATP-binding cassette membrane transporter G2 (ABCG2) gene is one of transporter family and well characterized for their association with chemoresistance. Promoter methylation is a mechanism for regulation of gene expression. O6-Methyl guanine DNA methyl transferase (MGMT) gene plays a fundamental role in DNA repair. MGMT has the ability to remove alkyl adducts from DNA at the O6 pos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011